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Abstract

We formally introduce a improvisational word-
play game called Connections to explore rea-
soning capabilities of AI agents. Playing
Connections combines skills in knowledge re-
trieval, summarization and awareness of cogni-
tive states of other agents. We show how the
game serves as a good benchmark for social
intelligence abilities of language model based
agents that go beyond the agents’ own mem-
ory and deductive reasoning and also involve
gauging the understanding capabilities of other
agents. Finally, we show how through commu-
nication with other agents in a constrained en-
vironment, AI agents must demonstrate social
awareness and intelligence in games involving
collaboration.

1 Introduction

In Season 6, Episode 4 of ‘The Big Bang Theory’
(Lorre and Prady, 2012), the characters Sheldon
Cooper and Leonard Hofstadter lose a game of
Pictionary to characters Amy Fowler and Penny,
because Sheldon’s clues being undecipherable to
his teammates, despite the clues “making sense”
to Sheldon himself, who is depicted as a very
intelligent physics savant. Clearly, games that
involved communication with team-members in
a constrained fashion (not spelling out the word
explicitly) require intelligence that go beyond
one’s own vocabulary and semantic connections,
it involves understanding how to effectively
communicate via shared world knowledge and
mutual understanding. It is known (Zhang et al.,
2020) that both semantic categories and relations
are represented by spatially overlapping cortical
patterns, however the exact way in which people
perceive semantic relations are highly variable
(Chaffin and Herrmann, 1984) and can depend
on socio-cultural, educational and occupational
factors. However, in such scenarios, understanding
the ways in other agents perceive semantic

relations and communicating accordingly is an
important aspect of social intelligence.

We now demonstrate the game “Connections”,
a popular form of oral game-play with multiple
variants played in different formats globally
with no clear origin. Similar games that involve
deductive reasoning along with gauging the
mental states of other participants, including
‘Mafia’, (Davidoff and Plotkin, n.d.) have been
long popular as party games played by young
adults. The game Connections requires the ability
to satisfy structural game constraints and most
importantly the awareness of capabilities of other
agents for effective game-play. We now describe
the rules of the game, and formalize it in later
sections.

In Connections, one player (the Setter) de-
cides on a word and other players(Guessers)
collectively attempt to discover this word. Initially,
a single letter is revealed to players. Game play
progresses when any player comes up with any
clue that may be answered by the starting letter.
The clue may be unrelated to the Setter’s word but
should be answered by a word with the same prefix.
A connection occurs if another player is able to
pick up the clue and simultaneously guess the
word based on the clue without the setter blocking
the clue by also guessing the word based on the
clue correctly. Every time a guesser player is able
to guess the clue by a different guesser player
without being blocked, a letter is revealed. In each
round, every player (apart from the one giving
a clue) can make only one guess, including the
setter. As more of the word is revealed over time,
guessing words and making clues becomes more
constrained. Ultimately the game should culminate
with a final clue that the setter is unable to block
(as it is the word the setter had in mind). This leads
to the termination of the game. The guessers win



if they together guess the word within a certain
number of clues (e.g., 50), else the setter wins.

Consider this example - three players sitting
in a circle with Player 0 assigned as the Setter to
start the game. The Setter thinks of a word and
writes it down without showing the word to other
players. The word is “Catamaran”.

• Setter: “The first letter is C”

• Player 1: “Garfield like?”

• Setter: “Not a Cat” [Example of clue block-
ing]

• Player 2: “Induces a pause in a sentence”

• Player 1 and Player 2 (simultaneously):
“Comma” [Successful Connection]

• Setter: “The next letter is A”

• Player 1: “Language in Western Europe”

• Player 1 (simultaneously): “CAtalan”

• Player 2 (simultaneously): “CAstillian”
[Guessor Wrong]

• Player 1: “Rug, sometimes flying”

• Player 1 and Player 2 (simultaneously):
“CArpet” [Successful Connection]

• Setter: “The next letter is T”

• Player 2: “Baby butterfly”

• Player 1 and Player 2 (simultaneously):
“CATerpillar”[Successful Connection]

• Setter: “The next letter is A”

• Player 1: “Speeds a chemical reaction”

• Player 1 and Player 2 (simultaneously):
“CATAlyst”[Successful Connection]

• Setter: “The next letter is M”

• Player 1: “Type of boat"

• Player 1 and Player 2 (simultaneously):
“CATAMARAN” [End of game play with rev-
elation of the word]

Normally played by a group of people, we show-
case the effects of game-play by LLM agents to
explore cognition, contextual understanding, and
reasoning capabilities of large language models.
A wide range of benchmarks have been proposed
for measuring the capabilities of Large Language
Models (Chang et al., 2024). Summarization (Ji
et al., 2023; Zhang et al., 2024; Pu and Demberg,
2023) question answering(Jiang et al., 2021), sub-
ject matter expertise and test taking, as well as
the understanding of social knowledge and social
cues(Choi et al., 2023). However, there is limited
work on the ability of Large Language Models to
show awareness to reason about the abilities of
other players and adapt.

Playing a game like Connections requires a va-
riety of different reasoning capabilities, requiring
both the ability to summarize, respond to questions,
have both general and subject knowledge exper-
tise. Most important, however, is the ability of
the agent to interact with and gauge the ability of
other game players. Not only is the player trying
to come up with a clever clue, there is a delicate
balance between coming up with clues that are
easy enough that other players may get them, yet
tricky enough so that the Setter does not block the
clue. Beyond just obtaining clues and answers via
lookup in clue-answer databases, agents must be
capable of generating clues taking into account the
knowledge and ability of other players.

Our goal in this work is to showcase that LLM
agents have the capacity to play such a game and
reason about the abilities of other players in order
to successfully collaborate.

2 Formal Description

Consider a vocabulary of words U with words
ui ∈ U. The words are made of letters chosen
from an alphabet set ℵ with size L, with characters
c1, c2, . . . , cL. Word ui has length ti, with
characters si1, si2, . . . siti . For simplicity, we use
the English alphabet with length 26.

Consider a set of n + 1 players, with in-
dices 0, 1, . . . , n where n ≥ 2. Player 0 is denoted
as the Setter. Let us focus on the simpler game
first (word is chosen and then fixed).

Different players have different working vo-
cabularies that they can think of candidate words
from. Let the working vocabularies for player j



be Uj , where all Uj ⊆ U. Consider a single play
in a run of the game when a player j thinks of
a word w agreeing with the revealed words and
thinks of a particular clue p. The clue should
be such that the clue is "associated" with the
word (e.g., domesticated animal → cat). We
represent the semantic embedding representations
of each player j through a function Φj that maps a
word or a string clue to a vector of m dimensions.
Hence, we assume that the embedding for word
w is one of the "closest" words to the embedding
representation for the clue p. Formally, for small
integer k, and a given clue phrase p,

w ∈ arg-k-max
u

(Φj(u) · Φj(p))

where the geometric proximity of the embedding
representation is just the vector dot product.
Ideally, k = 1 (the word in mind is the closest
word to the clue).

Note that even if the players know the same
word, the exact semantic connections between
this word and other words and phrases could be
different, so we assume each player has their
own representation Φj . But for words that are
most semantically close to the given clue in the
mental representation for one player, they should
be similarly close to the given clue in the mental
representation for other players, i.e., different
players can have different perceptions of the
relative (lack of) semantic closeness of drinking
container and chair, but they should have
similar perception of the semantic closeness of
drinking container and cup, even though the
"closest" word to the clue drinking container
may be chalice to some other player. More
formally, we can assume that, if for player j and a
clue p,

w ∈ arg-k-max
u

(Φj(u) · Φj(p))

then for other j′, there exists a constant ϵ such that

(1− ϵ)(Φj(w) · Φj(p))

≤ (Φj′(w) · Φj′(p))

≤ (1 + ϵ)(Φj(w) · Φj(p))

This is why this gameplay is a valuable bench-
mark to explain the effect of incorporation of
socio-cultural-educational aspects of an agent -
different human players have their unique learning

histories and are familiar with different sets of
vocabularies. In a real human gameplay, clues do
involve shared personal information that the setter
does not know (such as Sport I played in
high school, when B is revealed, where the setter
does not but some other guesser knows the answer
is badminton, despite baseball or basketball
being more ‘obvious’ answers.

An ideal clue that is revealed by a player
should not be too vague nor too obvious. A clue
like capital of France will be immediately
blocked by the Setter as Paris (unless Paris is
the answer) and a clue like a particular animal
is highly likely to invoke different animals as
the "closest" word to the given clue in different
players’ mental representations. Hence, formally if
the player j thinks of a word w and clue p, then

λL < Φj(w) · Φj(p) < λU

(clue is not too obvious, but not too unrelated to
the word in mind). If k > 1, for u ̸= w, u ∈
arg-k-max

u
(Φj(u) ·Φj(p)), other words that are suf-

ficiently close to the clue,

Φj(u) · Φj(p)) < λU

as well (the other players should not guess an
incorrect connection)!

For word ui, once letters 1, 2, . . . , k have
been revealed, future words which clues need to
be generated for need to have si1si2 . . . sik as a
prefix. This constrains the sample space in which
new words are generated probabilistically. We
obtain a probabilistic explanation of the heuristic
to generate a clue for a word, assuming that the AI
agents are uniform (i.e., the guesser who comes up
with a clue has no additional information regarding
the semantic alignment of other agents). Given a
partially revealed word, assume that the guesser
is agnostic as to which word in their vocabulary
adhering to the constraints, they actually choose to
give a clue for. Then, given a clue for this word,
let the probability of a given agent guessing it
correctly is p. Note that every agent gets to guess
once in a given round/turn. We want the setter to
not guess correctly (probability 1− p) and at least
one of the n− 1 other guessers to guess correctly.
Hence, the probability of success in this run (a
new letter is revealed) is (1− p)(1− (1− p)n−1).



Maximizing this, we see that we want

p∗ = 1−
(
1

n

) 1
n−1

For n = 2, 3, 4, 5, we have p∗ ≈
0.5, 0.43, 0.37, 0.33. More the players in-
volved, the clue giver can give a clue somewhat
vaguer as decreasing the odds of the setter blocking
the word is overcome by the odds of some guesser
getting it. The procedure of generating a suitable
clue thus has a mental model where the degree
of semantic overlap/connection between the
clue and the word (i.e., the dot product) can
be monotonically mapped to the probability of
success for the guessers overall. Clue generation
needs a mental proxy to find a roughly optimal clue.

We propose that such wordplay games are
important for another social intelligence ability
of AI agents - the ability to gauge a person’s
background over runs. This is an important step,
we opine, in making AI have intelligence abilities
of humans that go beyond deductive reasoning, for
the act of "finding" an optimal clue and an optimal
word assuming uniform agents is a mathematical
function. However, over arbitrarily many turns
of the game, an agent should be able to detect
which words some agents are more likely to get
connections with and less likely with. For example,
over turns, it is possible for humans to gauge who
has a better grasp of TV shows and who has a
better grasp of medical terminology, and choose
accordingly. Let the working vocabularies for
player i be Ui. Let U† = (∪n

i=1Ui) \ U0 be the
vocabulary that is common knowledge among the
non-setter players but unknown to the setter. A
good clue targets U†.

We can also describe the word and clue gen-
eration procedure probabilistically. In (Arora
et al., 2016), the authors build on (Mnih and
Hinton, 2007) and describe a generative model
that treats corpus generation according to a
log-linear production model where the probability
of generation of a word is proportional to the
exponential of the dot product with the discourse
vector, which is undergoing a slow random
walk and vw is the embedding vector of word
w. Analogously, consider the "true" discourse
vector for every agent j as d∗j . If the agent knew
the discourse vectors for every other agent, then

the word and clue generation procedure could be
"aligned" towards the discourse vector average
for guesser agents and away from the discourse
vector average for setter agents by considering the
truncated probability distribution (choosing the top
k probability words), where vw is generated by the
Φi mapping as mentioned before.

P[word w] ∝ exp(⟨vw, dsetter:avg⟩ − ⟨vw, d0⟩)

But, when an agent encounters a new agent, the
social intelligence of gauging the cognitive abilities
of the new agent is as follows:

• Let di←j be the discourse vector of agent j as
perceived by agent i. For all j and a fixed i,
let this perceived discourse vector be set to d†,
which is the discourse vector corresponding to
"common knowledge", the basic ideas people
know about.

• A word and the clue is generated by the gener-
ative process. Initially, di←setter:avg and di←0

are both set to d†, so the probability of gen-
erating a word is uniform, i.e., "any" random
word and clue is generated.

• Let η be a suitably small constant. Each word
w has its corresponding embedding vector vw.
If agent j fails to guess the clue for the word,
we subtract ηvw from the current value of
di←j , and if agent j correctly guesses the clue
for the word, we add ηvw to the current value
of di←j . di←setter:avg is recalibrated accord-
ingly.

• This gradient descent/ascent-like procedure
mimics the procedure of understanding the
cognitive backgrounds of other agents using
social intelligence, as it allows future turns to
generate clues more likely to be understood by
guessers and less so by the setter by updating
the perceived values of di←j .

• Likewise, when one guesser player i tries a
clue for a word w, other guesser players, at
the end of the turn, add ηvw to the perceived
discourse vector dj←i, as guesser i must have
their own discourse vector more aligned with
the word w.

3 Connections

3.1 Semantic Networks
The key observation is that games utilizing
semantic networks do not have a strict notion



of monotonicity - i.e., it is not that one player
agent strictly dominates another player agent by
correctly guessing the word to a clue whenever
the other agent guesses it correct, or a notion of
probabilistic monotonicity, i.e., it is not that one
player agent has strictly higher probability of
correctly guessing the word to a clue compared
to another agent. Similar to negotiation games,
(Davidson et al., 2023), "powerful" agents can lose
to weaker ones.

Semantic networks serve as the representa-
tional basis of our cognitive system as prominent
models of memory and reasoning. Semantic
networks represent knowledge through relations
between abstract objects (Borge-Holthoefer
and Arenas, 2010) and could vary considerably
between individuals and with different life
experiences(Benedek et al., 2017; Dubossarsky
et al., 2017; Morais et al., 2013) The goal of a
game like Connections is to elucidate, through
an iterative process, the discovery of sections of
the semantic networks of diverse players that are
structurally similar by the task of proposing a set
of valid clues that should elicit the same response
that must also vary from that of the Setter. Using
LLMs for game play requires semantic priming
through a prompt to identify the specific role of
the agent since the base model for each agent may
be the same.

3.1.1 Knowledge-Based Clues

Semantic clues would most often rely on having a
shared knowledge about a certain concept or idea.
Such clues should be effective to identify the target
word precisely if other players have the requisite
knowledge. For instance the clue “Speeds a chemi-
cal reaction" is precipitated on some other player
having some knowledge of chemical reactions. The
domain and technical depth of clues produced is
linked to the depth and breadth of vocabulary that
players may share(Vermeer, 2001). In the human
player setting, if two players are able to discover a
shared area of knowledge which the Setter is not
familiar with the game is significantly simplified.
The players can now use this to produce clues that
will not be blocked, given they may have a suffi-
ciently rich vocabulary to be able to play the game
as the prefix elongates.

3.1.2 Personal Clues
A very effective means of giving clues is those that
are built on shared experiences of players or based
on some level of knowledge that players have about
other players. Such clues are expected to largely be
successful as they may not hold any meaning to the
Setter or even other players but would allow those
who have the appropriate context to guess a word
effectively. However, as the space of words gets
restricted as more letters are revealed, it is unlikely
that there might be adequate personal clues that
exist. I.e. forming a personal clue to the prefix “C"
might be easy as “ What pet I have" but not to the
prefix “CATA".

3.1.3 Word Association Clues
Words have associative links to each other to vary-
ing degrees, both semantically, structurally as well
in the cognitive representation in memory (Kar-
woski and Schachter, 1948), (Kent and Rosanoff,
1910). Word associative clues may be used in the
game such as “Good-Bad", “Hero-Villain", “Sun-
Moon" that leverage this associative structure. Of-
ten words exist where the most frequent response to
a given clue is several times as frequent as the next-
most-frequent response (Woodworth and Schlos-
berg, 1954) or there are well developed word as-
sociation norms that have (Palermo and Jenkins,
1965; Nelson et al., 2004; Toglia and Battig, 1978).
A key challenge in playing the game with associa-
tive clues is that though such clues elicit the correct
response it is likely the Setter will easily be able to
block such clues.

4 Experiments

We run experiments with three players using the
GPT-4o model as the language model powering
the reasoning capabilities of the players. We assign
the role of the Setter to Player 0, and Player 1 and
Player 2 play the roles of the Guesser. Initially,
Player 0, decides a word and reveals only the
first letter to players after which the game play
proceeds as described. The results of running
this game play over a few iterations are recorded
in Table 1. The ‘Reveals’ column describes the
number of successful letter reveals that happened
before the word was guessed, while the ‘Guesser
wrong’ and ‘Setter Blocked’ columns respectively
describe the cases where either the other player
guessed the response to the clue incorrectly or the
clue was blocked by the setter.



Word Reveals Guesser Wrong Setter Blocked Iterations
kaleidoscope 0 1 7 8
xenophobia 1 2 4 7
labyrinthine 9 26 12 47
uppercases 8 20 18 46
entrepreneur 4 12 26 42
laboriously 5 21 23 49
encyclopedia 5 17 38 60
villeinage 4 30 40 74
exploration 5 54 22 81
photosystem 6 31 48 85
elaborately 7 48 35 90
goldfish 6 42 53 101
revolving 6 58 37 101
precaution 5 54 47 106
multinomial 4 45 59 108
precipitate 9 39 68 116
metamorphosis 7 39 71 117
circumvented 9 83 72 164
conjunction 5 123 45 173

Table 1: Comparisons Across Different Words, Two Guessers, One Setter (Ordered by Iterations)

We illustrate a sample of the full interaction
between agents in Appendix A. We used a variety
of prompts to guide the actions of the LLM agents
which are detailed in Appendix B.

4.1 Reasoning Capabilities

We observe that players showcase interesting rea-
soning capabilities. Certain behaviors are well ex-
pected and similar to human agents such as the
relatively smaller number of iterations observed for
the word starting with ‘X’ as opposed to a much
higher number of iterations of game play for words
starting with ‘C’. Though there is a high degree of
chance in guessing the right word, the set of word
beginning with ‘X’ is much smaller than with ‘C’.
1 showcases the number of letters revealed over the
number of iterations before the word is correctly
guessed. We observe that models generally tend
to need fewer iterations beyond the first few letter
guesses as the constrained space of words given
a longer prefix is smaller, however, an interesting
non-human behaviour that is observed is that some-
times there is a lot of iterations between the final
letter being revealed and the word being guessed
often as a result of the model making bizarrely un-
common guesses prior to make guesses that are far
more obvious.

4.2 Social Awareness

In standard game play, we observe that an over-
whelming number of clues are blocked by the Set-
ter, since it is likely given that we are using the

Figure 1: Number of Characters Revealed over itera-
tions for words with more than 100 iterations of game
play

same language model, the semantic network to rep-
resent words for all agents is quite similar. How-
ever, by introducing in-context learning(Lampinen
et al., 2022), we can instigate varying behaviours.
Notably, by priming the agent on aspects such
as profession, cultural context, age, we can in-
stigate a change in the semantic network of the
model(Benedek et al., 2017; Dubossarsky et al.,
2017; Morais et al., 2013). Under such a frame-
work, we observe the AI agents’ ability to utilize
this context in the game play through the use of
concerted vocabulary and clues if agents are ex-
plicitly made aware of the the priming for other
agents. However, unlike humans, AI agents may
be unable to gauge this context, or may fail to act
in a way to discover this information through the
use of diverse clues to attempt to find regions of the
semantic network that might be similar between
agents without any prompting.



5 Future Work

Our work considers a simple game where the word
picked by the Setter is fixed. A more sophisticated
version of this game, and one that is common in
game-play is where the word is not necessarily
fixed (not written down before) but has to agree
with the game played so far. For example, the Set-
ter in this particular game-play may realize after
the letters ‘C’, ‘A’,‘T’ and ‘A’ being revealed that
once the letter ‘M’ is revealed, there are not enough
words besides the chosen word ‘catamaran’ (and
the Setter can no longer block it). However, if the
Setter now switches to ‘cataclysm’, the Setter has
an advantage because there are other words starting
with ‘catac’, such as ‘catacomb’. The Setter wants
to pick a word that is sufficiently obscure but pre-
fixes do not give the word away easily. Modifying
our experiments to not have the word be fixed a
priori has limited success as the LLM is not able
to robustly recall the game history to make impro-
visational decisions. Future work can explore the
proof-of-concept alignment of perceived discourse
vectors of other agents, given AI agents with a
variety of historical training/life experiences that
goes beyond priming. A LLM agent endowed with
social intelligence capabilities shows a first step
towards more complex reasoning patterns that re-
quire sensory and cognitive abilities as well as the
power of agency to autonomously adapt to chang-
ing scenarios. (Liu, 2017)
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A Sample Gameplay

Word chosen: ’XENOPHOBIA’

Setter : X

Attempt Number 1
Guesser 1 (mentally) : Xylograph
Guesser 1 : Woodblock printing technique

Setter : Xylography
Guesser 2 : Xylography
Setter attempted XYLOGRAPHY , Player
attempted XYLOGRAPHY
Guesser Wrong!

Attempt Number 2
Guesser 1 (mentally): Xanthophyll
Guesser 1 : Leaf pigment category
Setter : Xanthophyll
Setter attempted XANTHOPHYLL
Setter Blocked!
BLOCKED: [’XANTHOPHYLL’]

Attempt Number 3
Guesser 1 (mentally): Xenoglossy
Guesser 1 : Mysterious language
phenomenon
Setter : Xenoglossy
Setter attempted XENOGLOSSY
Setter Blocked!
BLOCKED: [’XANTHOPHYLL’, ’XENOGLOSSY’]

Attempt Number 4
Guesser 1 (mentally): Xiphophyllous
Guesser 1 : Sword-shaped leaves
Setter : Xiphoid
Guesser 2 : Xiphophyllous
Setter attempted XIPHOID , Player
attempted XIPHOPHYLLOUS
Success!
Comparing XIPHOPHYLLOUS with XENOPHOBIA
Game not over yet

Setter : XE

Attempt Number 5
Guesser 1 (mentally): Xenolithic
Guesser 1 : Foreign rock inclusion
Setter : Xenolith
Guesser 2 : Xenolith
Setter attempted XENOLITH , Player
attempted XENOLITH
Guesser Wrong!

Attempt Number 6
Guesser 1 (mentally): Xenogenesis
Guesser 1 : Alien life formation
Setter : Xenogenesis
Setter attempted XENOGENESIS
Setter Blocked!
BLOCKED: [’XENOGLOSSY’, ’XENOGENESIS’]



Attempt Number 7
Guesser 1 (mentally): Xerophthalmia
Guesser 1 : Dry eye condition
Setter : Xerophthalmia Setter attempted
XEROPHTHALMIA
Setter Blocked!
BLOCKED: [’XENOGLOSSY’, ’XENOGENESIS’,
’XEROPHTHALMIA’]

Attempt Number 8 Guesser 1 (mentally):
Xenophobia
Guesser 1 : Fear of foreigners
Setter (mentally): Xenophobia (Cannot
block anymore)
Guesser 2 : Xenophobia
Player attempted XENOPHOBIA
Success!
Comparing XENOPHOBIA with XENOPHOBIA
Guessed Correctly. Game Over.
Reveals, GuesserWrong, SetterBlocked:
1 , 2 , 4
7

B Prompts

• Prompt to generate a new word:

You are playing a wordplay game,
where you are the setter player
playing against 2 guesser players.
You have to pick a legitimate English
word of some suitable length. The
guesser players have to guess the
word gradually. For now, pick a
totally random word and just output
that word without any leading phrases.
Do not output anything else, only
one single word.

• Prompt explaining the rules to the setter:

Here are the rules of the game.
Initially, you reveal the first
letter to all guesser players. In
every round, one guesser player
will come up with a suitable clue
phrase whose answer begins with your
revealed letter(s). If you can guess
the answer to their clue and it is
not the same as the word you had
picked, then you will output in that

round the answer to their clue. If
your guess is the same as the answer
to the clue a guesser player came
up with, then there is a new round.
If your guess is different than the
answer to the clue a guesser player
came up with, a different guesser
player will try to guess the clue
word. If this different guesser
player guesses the answer correctly,
then you will have to reveal the next
character of the word. In future
rounds, the other guesser players
have to come up with clues whose
answers begin with the same letters
as the characters you have revealed
so far. Do you understand? Output
Yes or No, just that.

• Prompt explaining the rules to the guesser:

You are playing a game with other
guesser players against a setter
player who is slowly revealing the
initial letters of the word. The
setter player will initially tell
you just the first letter of the
word. Each round, you can find a
random word that starts with the
initial letters revealed so far.
Then, you need to come up with a
meaningful clue or a description of
this word and reveal it to other
guesser players. You are not allowed
to have a clue that is very similar
to the word itself. If the word you
found is not the same as the word
that the setter came up with, the
setter will try to guess your word
and block it by saying your word.
If some other guesser player can
correctly guess your word, then the
setter player will reveal one more
letter. If the word both the guesser
players guessed is the same as the
word the setter player came up with,
you all win. In every round, you
can either choose to make a clue or
try to guess from some other guesser
player’s clue. Note that in every
round, your word must start with the
initial letters revealed so far. Do



you understand? Output Yes or No,
just that

• Prompt to generate a word from a clue:

You have been given the clue
. . . . Now, guess a single word that
could be a possible answer to this
clue, starting with the letters . . . .
Make sure your word is NOT one of
these words: . . . and is different.
Just output this word, do not output
anything else.

• Prompt to generate a clue:

The partial word you know so
far is. . . . Come up with a word
that starts with . . . . Make sure
your word is NOT one of these words:
. . . and is different. Just output
this word, do not output anything
else.”

• Prompts to correct an agent:

– Your earlier word does not start
with . . . . Try again. Come
up with a word that starts with
. . . . Make sure your word is NOT
one of these words: . . . and is
different. Just output this word,
do not output anything else.

– Your earlier word does not start
with . . . . Try again. You have
been given the clue . . . . Now,
guess a single word that could
be a possible answer to this
clue, starting with the letters
. . . . Make sure your word is NOT
one of these words: . . . and is
different. Just output this word,
do not output anything else.

– Your earlier word cannot be one
of these words: . . . . Try again.
Come up with a word that starts
with . . . . Make sure your word is
NOT one of these words: . . . and
is different. Just output this
word, do not output anything
else.

– Your earlier word cannot be one
of these words: . . . . Try again.

You have been given the clue . . . .
Now, guess a single word that
could be a possible answer to this
clue, starting with the letters
. . . . Make sure your word is NOT
one of these words: . . . and is
different. Just output this word,
do not output anything else.
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